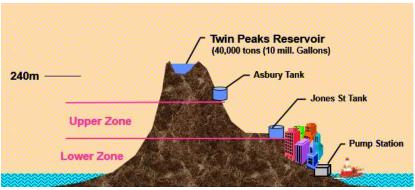
Which is the Most Important Pipe in a Water Distribution System?

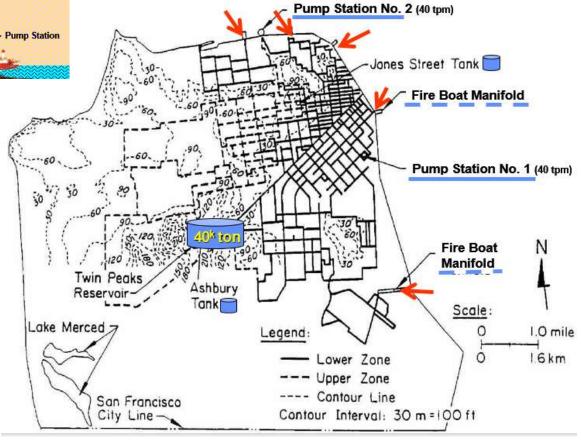
Charles Scawthorn, S.E.

SPA Risk LLC and Visiting Researcher, Univ. California, Berkeley Professor of Infrastructure Risk Management (ret.), Kyoto University

WED38	Planning and Response to Disasters-System Modeling to Corporate Policy							
	1:30 – 4:30 p.m. Room: Lagoon EF Track: Preparedness, Resilience Moderator: Jim Cooper	1:30	Assessing the Resilience of Drinking Water Systems to Disasters Regan Murray, USEPA, Kate Klise, Sandia National Laboratories					
		2:00	Evaluating Water Distribution Networks' Response to Emergency Events Ben Chenevey, Arcadis					
		2:30	Real-Time Data Analytics and Modeling for Emergency Response (LINK & RTX) James Uber, Citilogics, Robert Janke, USEPA					
		3:00	Building a Resilient Pipe Network Xavier Irias, East Bay Municipal Utility District					
		3:20	Which is the Most Important Pipe in a Water Distribution System? Charles Scawthorn, SPA Risk LLC					
		3:40	What if a Spreadsheet and GIS Could Accurately Reproduce Water Service Restoration after the 2014 South Napa Earthquake? Jim Wollbrinck, San Jose Water Company					
		4:00	Metropolitan Water District's Seismic Resilience Strategy David Clark, Metropolitan Water District of Southern California					



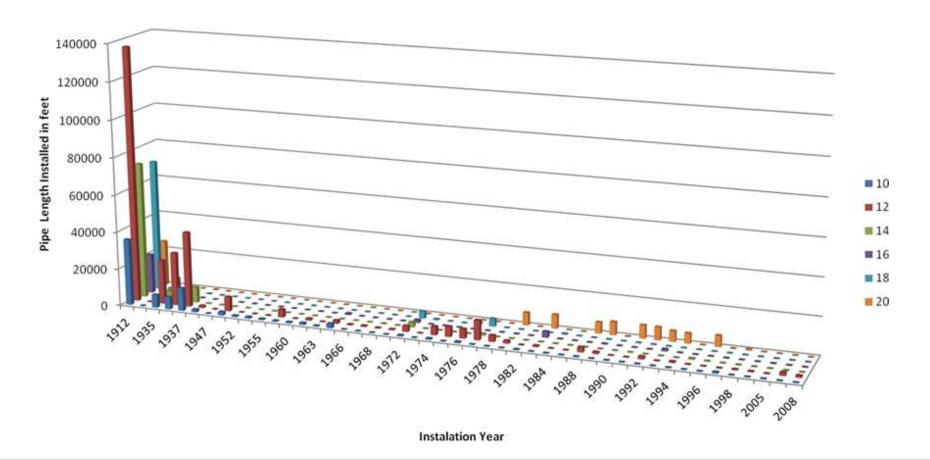
2


Outline

- Project impetus
- Problem how to identify which pipe to remediate so as to contribute most to system reliability?
- Solution PIPE Algorithm
 (Pipe Importance and Priority Evaluation)
- Application to San Francisco's AWSS system
- Results
- Summary

San Francisco Auxiliary Water Supply System (AWSS)

- 200 km. extra heavy wall pipe (mostly CI)
- 2 x 10,000 gpm (667 lps) pump stations
- Many other features...



Major pipe replacement need

AWSS pipeline network

• Over 127 miles of 10" - 20" CIP &DIP Mains

Problem Statement

- AWSS pipe network > 130 miles, 60% from ~ 1912
- Aging, Infirm areas, possible corrosion...
- → Which to replace / abandon?
- In other words, which pipes are the Most Important Pipes (MIP)?
 - Meaning of *Important*?
 - Breaks most frequently?
 - Pipe that protects the greatest value?
 - Pipe that carries the most water?...
 - Determining MIP must consider many factors:
 - Hydraulics and place in the network (e.g., source vs. deadend)
 - Condition, age... (i.e., vulnerability)
 - Hazard (shaking, liquefaction...)
 - Size of likely fires

"Most Important Pipe" (MIP) problem

- Atiquzzaman, M., Liong, S., & Yu, X. (2006). Alternative Decision Making in Water Distribution Network with NSGA-II. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 132(2), 2004–2008.
- Al-Zahrani, M., & Syed, J. L. (2004). Hydraulic Reliability Analysis of Water Distribution System. *Journal of The Institution of Engineers*, 1(1). Journal Article.
- Ang, W. K., & Jowitt, P. W. (2006). Solution for Water Distribution Systems under Pressure-Deficient Conditions. Journal of Water Pressure-Deficient Conditions. Planning and Management, 132(3, June), 175–182.
- Dasic, T., & Djordjevic, B. (n.d.). Method for water distribution systems reliability
- unsolved until this Assessment Farmani, R., Walters, G. A., & Savic, D. A. (2005). Trade Co. JOURNAL OF WATER RESOLUTOR
- Fragic 1 aroan water networks. Earthquake Engng Struct. Dyn., 43, 357– 374.
- Fujiy . Remainity analysis of water distribution networks in consideration of equity, redistribution, and pressure dependent demand. wATER RESOURCES RESEARCH, 34(7), 1843–1850.
- Germanopoulos, G. (1986). Assessing the reliability of supply and level of service for water distribution systems. *Prof. Inst. Civil Engrs.*, 80(June), 413-428.
- Gomes, J., & Karney, B. W. (2005). Water Distribution System Reliability under a Fire Flow Condition: In Impacts of Global Climate Change (pp. 1-12). EWRI.
- 10. Ozger, S. S. (1994). A SEMI-PRESSURE-DRIVEN APPROACH TO RELIABILITY ASSESSMENT OF WATER DISTRIBUTION NETWORKS, 1-8.
- 11. Schaetzen, W. de, Taylor, D., MacPherson, G., & Naiduwa, C. (2006). FIRE FLOW ANALYSIS FOR OPTIMAL NETWORK IMPROVEMENT. 8th Annual Water Distribution Systems Analysis Symposium. Conference Paper, Cincinnati, Ohio, USA.
- 12. Schneiter, C. R., Haimes, Y. Y., Li, D., & Lambert, J. H. (1996). Capacity reliability of water distribution networks and optimum rehabilitation decision making Maintenance. Water Resources Research, 32(7), 2271–2278.
- 13. Torii, A. J., & Lopez, R. H. (2012). Reliability Analysis of Water Distribution Networks Using the Adaptive Response Surface Approach. Journal of Hydraulic Engineering, 138(March), 227–236
- 14. Wagner, B. J. M., Shamir, U., & Marks, D. H. (1988). WATER DISTRIBUTION RELIABILITY: ANALYTIC METHODS. Journal of Water Resources Planning and Management, 114(3).
- 15. Wagner, B. J. M., Shamir, U., & Marks, H. (1988). WATER DISTRIBUTION RELIABILITY: SIMULATION METHODS. Ournal of Water Resources Planning and Management, 114(3), 276–294.
- 16. Wang, Y., Au, S.-K., & Fu, Q. (2010). Seismic Risk Assessment and Mitigation of Water Supply Systems. Earthquake Spectra, 26(1), 257–274.
- 17. Wu, Y., Xu, Y., Tan, Y., & Chen, J. (2010). Hydraulic State Estimation of Post-Earthquake Water Distribution Systems. Water Distribution System Analysis 2010. Conference Paper, Tucson, AZ.

Solution: PIPE Algorithm

Pipe Importance and Priority Evaluation (PIPE) Algorithm

- 1. Monte Carlo simulation (Python wrapper on EPANET, adapted to do Pressure-driven hydraulic analysis (PDA, (considers multiple simultaneous pipe breaks and leaks given pipe vulnerabilities, PGV and PGD)
- 2. Regression analysis \rightarrow Average Deficit Contribution (ADC)
- 3. ADC = each pipes' average contribution to flow deficit (all simulations, considering FRA demands, hydraulics and breaks)
- 4. Rank pipes by ADC → highest ADC is "most important pipe" (this pipe has the highest contribution to average deficit in demand)

PIPE Algorithm

EXAMPLE

Total Demand: 63,989 gpm

Leakage: 25,000 gpm

2 FRAs don't get required fire flow

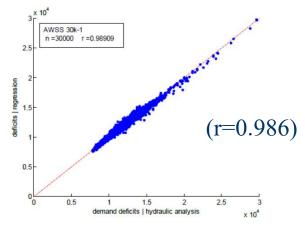
If FRA 1 required fire flow = 4000 gpm and AWSS can only provide 3000 gpm → deficit = 1000 gpm

FRA 2: 3000 - 2500 \rightarrow deficit = 500 gpm

Sum all deficits = $1500 \rightarrow to$ be minimized

Wainlata i

N simulations:

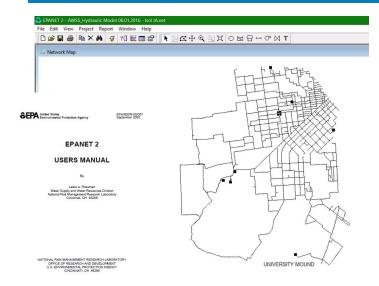

FR = Leakage in pipe
$$i$$
 of simulation j
124 142 32 86 0 324 0 ...
0 345 0 0 0 487 0 ...
23 0 0 0 432 0 0...

weights <i>i</i>									
	w1								
	w2								
	w3								

PIPE Algorithm (cont.)

Solve for weights w_i

Weights accurately model syste



 \rightarrow Pipe *i* 's Average Deficit Contribution =

$$ADC_i = \left(\sum_{j=1...N} FR(i,j)\right) \frac{w_i}{N}$$

Analysis Tools

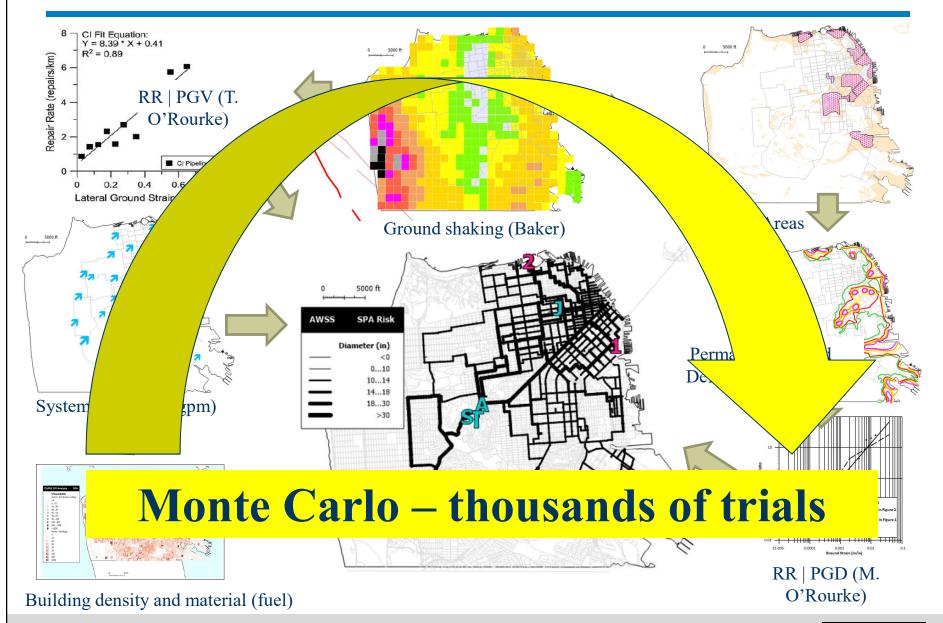
EPANET: very fast hydraulic analysis

(general, not seismic, demand driven, cannot account for negative pressures ...)

Need: Pressure-driven analysis, addresses reliability, identifies MIP

5000 ft

PIPE Algorithm (Summary)


- 1. ADC is calculated for all pipes
- 2. Pipes are ranked in descending *ADC* order.
- 3. The ranking is the relative importance of each pipes' contribution to the average of deficits for all simulations.
- 4. The pipe with highest *ADC* is the pipe that contributes most to the demand's deficit, 2nd highest ranked pipe contributes next most, and so on.
- 5. If the highest ranked pipe is mitigated, that mitigation contributes most to overall average deficit reduction, and so on.
- 6. The approach incorporates:
 - Ground motion → Damage
 - Monte Carlo simulation (i.e., uncertainty)
 - Pressure-driven hydraulic modeling (no negative pressures)
 - PIPE algorithm identifies "most important pipe"
- 7. The approach is:
 - Accurate
 - State-of-the-art / New (i.e., not done before)
 - Published ASCE Pipeline Conference...to be submitted for journal

Steps in the analysis

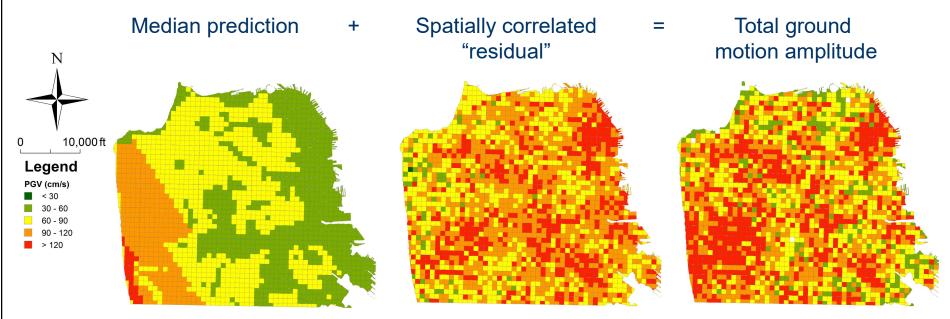
Pipe Replacement Given Random Defects, Scawthorn

10th JWWA/WRF/CTWWA Water System Seismic Conference October 18-21, 2017 ● Tainan, Taiwan

SPA Risk LLC

Stanford ground motion simulation approach

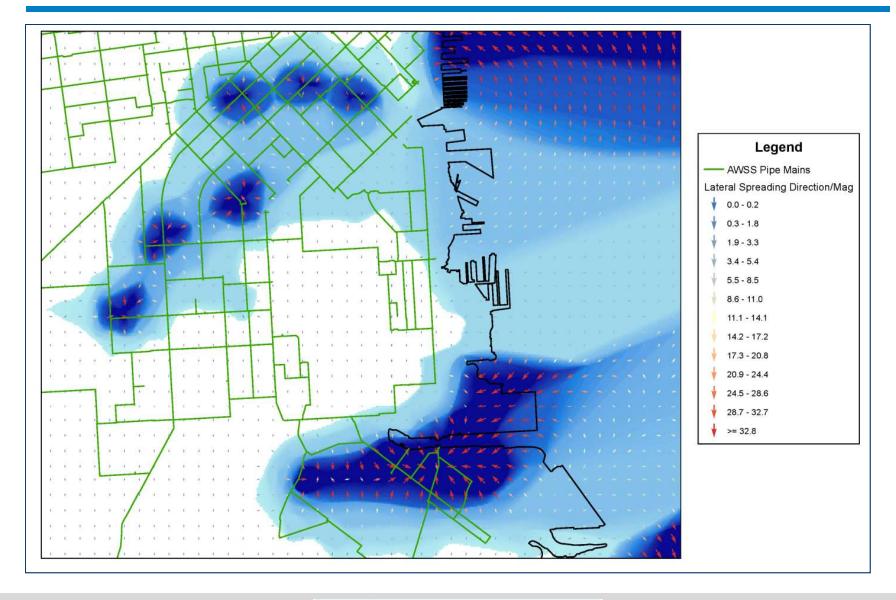
60,000 simulations (all events)



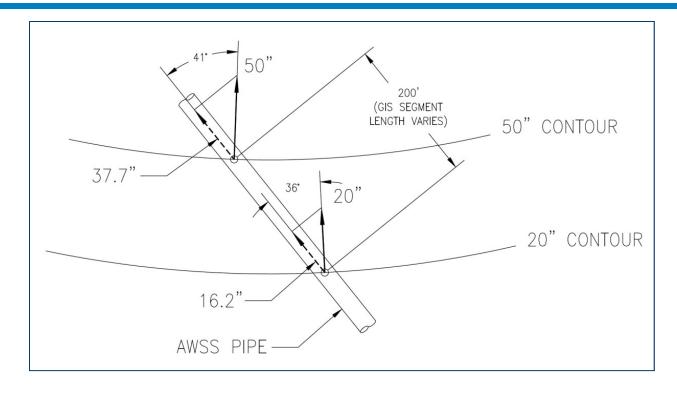
91 simulations (all events)

(15 EQ Scenarios)

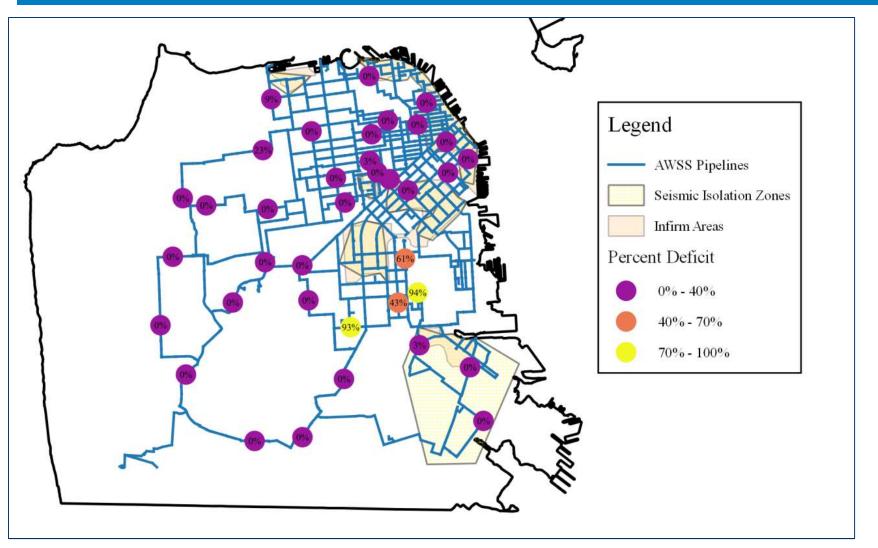
For a given rupture scenario (e.g., M7.9 San Andreas):


Residuals are empirically calibrated from past earthquakes and account for ground motion variability

Miller and Baker (2015). "Ground-motion intensity and damage map selection for probabilistic infrastructure network risk assessment using optimization." *EQ Engineering & Structural Dynamics*, 44(7), 1139–1156.

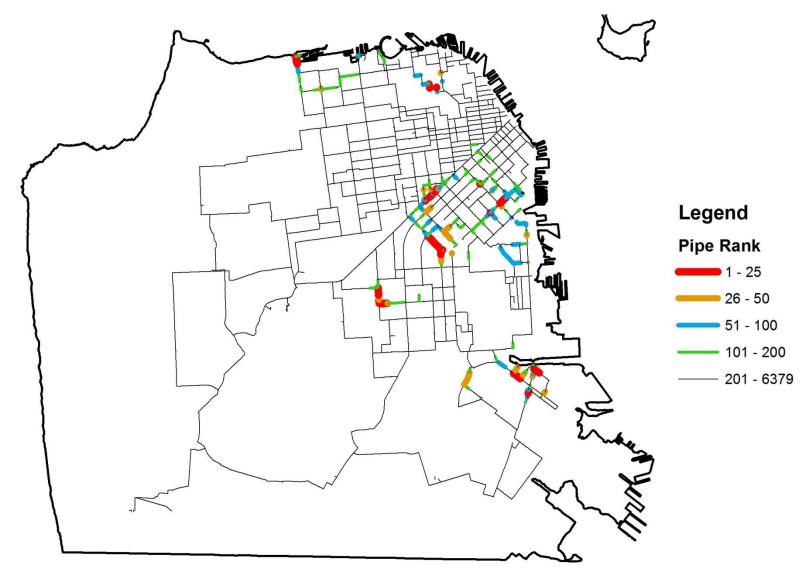


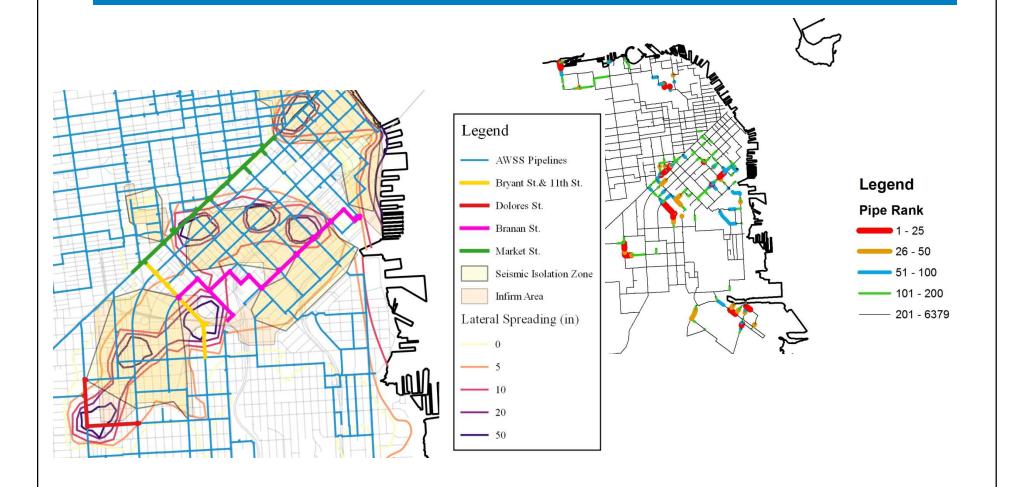
Permanent Ground Deformation


Permanent Ground Deformation

Mechanistic fragility curve – M. O'Rourke Ground strain to repair rate calculation

Damaged Network Performance


Post Earthquake Base Case



17

System Analysis – Pipe Importance by ADC

System Analysis – Pipe Importance by ADC

System Analysis – Results

Project	Length (ft)	ADC	Cost	GPM Supplied	GPM Increase	\$/GPM Increase	% Supplied	Worst FRA % Supplied
0	0	0	\$ -	57,499	-	\$ -	89.86%	5.82%
1	5,956	5,055	\$ 7,540,000	59,887	2,388	\$ 3,156	93.59%	31.41%
2	3,982	1,130	\$ 4,210,000	58,202	703	\$ 5,994	90.96%	17.65%
3	11,810	2,696	\$ 16,700,000	58,076	577	\$ 28,937	90.76%	12.02%
4	8,927	1,911	\$ 13,040,000	57,992	493	\$ 26,454	90.63%	10.95%
1 & 2	9,938	6,185	\$ 11,750,000	60,953	3,454	\$ 3,402	95.26%	55.84%
1 & 2 & 3	21,747	8,880	\$ 28,450,000	61,933	4,434	\$ 6,416	96.79%	72.56%
1 & 2 & 3 & 4	30,674	10,791	\$ 41,490,000	63,096	5,597	\$ 7,413	98.60%	87.81%

Conclusions

- A new method, the *Pipe Importance and Priority Evaluation (PIPE)* Algorithm, has been developed that allows identification of which pipe contributes most to system deficit, given complexities of hydraulic demands, network topology and seismic (or other) impacts.
- The PIPE algorithm has been applied to a large real world water system requiring high reliability
- Under non-earthquake conditions the AWSS (i.e.,) meets 100% of demands.
- With Infirm Areas *isolated* after an earthquake, the system will lose ~43,000 gpm through leaks and breaks and have a demand deficit of ~6,500 gpm. (~63,000 gpm and ~8600 gpm with IA's open)
- Application of the PIPE algorithm efficiently identified the least cost pipe replacement program.

THU07 Use of Risk in Pipeline Renewal Planning

8:30-11:00 a.m.

Room: Mandalay Bay Ballroom J

Track: Asset Management
Moderator: Paul Schumi

8:30 AWWA C900 PVC Water Main Pipe: 40 Years of Successful Service Douglas Seargeant, Epcor Water Services, Inc.

9:00 SAWS Uses Finite Element and Remaining Useful Life Analysis to Defer \$40M Pipeline Replacement Ashan McNealy, Pure Technologies, Inc. Andy Dettmer, Brian Ellis, Jennifer Steffans, Linda Bevis

9:30 Dallas Defers \$70M Capital Replacement of 84-inch PCCP
Water Main Using Remaining Useful Life Analysis
Randall Payton, Dallas Water Utilities, Andy Dettmer,
Johnny Partain, George Scaaf

Additional details tomorrow

- 10:00 Prioritizing Water Distribution System Pipe Replacement
 Given Random Defects
 Charles Scawthorn, SPA Risk, LLC, Eugene Ling, David Myerson,
 Douglas York
- 10:30 Las Vegas Valley Water District Pipeline Risk Analysis Roger Jordan, Las Vegas Valley Water District, Nass Diallo, Las Vegas Valley Water District, Laura Jacobsen

Water Distribution System Pipe Replacement Given Random Defects

Thank you

cscawthorn@sparisk.com